

Structure and Liftoff In Combustion Experiment (SLICE)

PI: Prof. Marshall Long, Yale University

Co-I: Prof. Mitchell Smooke, Yale University

Co-I: Mr. Dennis Stocker, NASA GRC

Co-I: Dr. Fumiaki Takahashi, NCSER

PM: Robert Hawersaat, NASA, GRC

Engineering Team: ZIN Technologies, Inc.

Objective:

- SLICE significantly extends the SPICE investigation by introducing additional objectives that relate to flame stability and structure rather than the smoke point.
- The SLICE objectives will provide experimental results that will allow optimization of the ACME Coflow Laminar Diffusion Flame experiment, increasing its scientific return.

Relevance/Impact:

- Improved design capability through the validation of combustion models over a wider parameter range.
- Improved understanding of and ability to predict heat release and emission in microgravity fires.

Development Approach:

- The SLICE experiment will use the on orbit SPICE Experiment Assembly to conduct the SLICE science.
- Engineering model hardware used for SLICE ground testing purposes.
- Crew required to set up and operate the experiment. Video and data down-linked to the ground for evaluation.
- SLICE is scheduled to launch on Shuttle flight ULF-5 and operated during Inc 23-24 on board ISS in the Microgravity Science Glovebox facility.

SPICE Experiment Assembly

Glenn Research Center

Figure shows the microgravity flame lifting phenomena

ISS Resource Requirements

Accommodation (carrier)	Microgravity Science Glovebox				
Upmass (kg) (w/o packing factor)	18				
Volume (m³) (w/o packing factor)	0.096				
Power (kw) (peak)	0.05				
Crew Time (hrs) (installation/operations)	23 hours crew time				
Autonomous Ops (hrs)	N/A (all hands on crew ops)				
Launch/Increment	ULF-5/Inc 23-24				

Revision Date: 10/13/2009 Project Life Cycle Schedule

Milestones	SCR	RDR	PDR	CDR	VRR	FIt Safety	FHA	Launch	Ops	Return	Final Report
Actual/ Baseline	N/A	N/A	N/A	8/1999	N/A	2/2010	5/2010	9/2010	Inc. 23.24	OPS + 4 m	Return +12m
Documentation	Website:http://spaceflightsystems.grc.nasa.gov/Advanced/ISSRese arch/MSG/SPICE eRoom:https://collaboration.grc.nasa.gov/eRoom/NASAc1f1/ISSHu manResearchProjectsOffice				SRD: in work EDMP:http://edmp.grc.nasa.gov			Project Plan:https://collaboration.grc.nasa.gov/eRoom/NASAc1f1/ISSResearc hProject/0_d1bde SEMP: 1			